Nonnegative Matrix Factorization Numerical Method for Integrated Photonic Cavity Based Spectroscopy
نویسندگان
چکیده
منابع مشابه
A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملQuantized nonnegative matrix factorization
Even though Nonnegative Matrix Factorization (NMF) in its original form performs rank reduction and signal compaction implicitly, it does not explicitly consider storage or transmission constraints. We propose a Frobenius-norm Quantized Nonnegative Matrix Factorization algorithm that is 1) almost as precise as traditional NMF for decomposition ranks of interest (with in 1-4dB), 2) admits to pra...
متن کاملQuadratic nonnegative matrix factorization
In Nonnegative Matrix Factorization (NMF), a nonnegative matrix is approximated by a product of lower-rank factorizing matrices. Most NMF methods assume that each factorizing matrix appears only once in the approximation, thus the approximation is linear in the factorizing matrices. We present a new class of approximative NMF methods, called Quadratic Nonnegative Matrix Factorization (QNMF), wh...
متن کاملRandomized nonnegative matrix factorization
Nonnegative matrix factorization (NMF) is a powerful tool for data mining. However, the emergence of ‘big data’ has severely challenged our ability to compute this fundamental decomposition using deterministic algorithms. This paper presents a randomized hierarchical alternating least squares (HALS) algorithm to compute the NMF. By deriving a smaller matrix from the nonnegative input data, a mo...
متن کاملA Stochastic Nonconvex Splitting Method for Symmetric Nonnegative Matrix Factorization
where (a) because that E and Tr are both linear operators and Tr[E[ZZ ]] is certain positive number which is independent on the optimization variables, then this term can be replaced by another positive constant Tr[EZ[Z ]EZ[Z]]. Based on the equivalence between (13) and (14), we can apply the result shown in [28, Lemma 2]. Since the constraint set is polyhedral in the formulation (3), the linea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanomaterials
سال: 2014
ISSN: 1687-4110,1687-4129
DOI: 10.1155/2014/310601